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Abstract—The present investigation studies the cooling of a continuous moving sheet of finite thickness.
The effect of the buoyancy force is also taken into account. The temperature distribution along the solid—
fluid interface is determined by solving a conjugate heat transfer problem that consists of heat conduction
inside the sheet and induced mixed convection adjacent to the sheet surface. For a better numerical
stability, the weighting function scheme along with an axial coordinate transformation is employed to
solve the transformed boundary layer equations. Three parameters are found to exist in the present
investigation. They are the Prandtl number of the fluid Pr, the buoyancy parameter Q and the heat capacity
ratio C. Numerical results including the Biot number, the surface temperature and the overall heat transfer
rate of the sheet are presented for 0.7 < Pr < 100, 0 € Q < 10 and 0.1 € C < 1. The buoyancy force is
seen to have a significant effect on the results. The heat capacity ratio, however, is the most important
parameter. Based on the present results, it is concluded that using a liquid as the cooling medium could
obtain a better cooling performance than using a gas. This is because the liquid has a larger heat capacity
than a gas. The Prandtl number has only a minor effect.

INTRODUCTION

IT 1S A common method to draw a hot material
through a slot (or an orifice) in sheet (or fibre) manu-
facturing. In these industrial processes, control of the
cooling rate of the sheets (or the fibres) is very impor-
tant to obtain a desired material structure. As the
continuous sheets (or fibres) move through a cooling
tank or atmosphere, they are cooled by the boundary
layers induced on their surfaces due to the viscous
force. The induced boundary-layers were found to
dominate the cooling rate of the sheets (or fibres) and
have been extensively studied by many investigators
for continuous moving sheets [1-14] and cylinders
[1, 3, 15-21].

Sakiadis [1, 2] was the first investigator to analyse
the boundary layer flow induced on a continuous
moving sheet. Later, his predicted velocity profile was
verified by the experiments performed by Tsou er al.
[6, 7]. This indicates that the mathematically described
boundary layer on a continuous moving surface is a
physically realizable flow. Tsou ez al. [6] found also
that the critical Reynolds number is about 4.96 x 10¢
on a continuous moving sheet as compared to
0.949x 10° on a classic Blasius flow. Hence, the
induced boundary layer flow on a moving sheet is
practically laminar. In their experimental study on
cooling time of silica fibres, Arridge and Prior [16]
found that the temperatures of the silica fibres fol-
lowed Newton’s cooling law as they decreased from
1750 to 150°C at a moving speed of 1.78-5.08 m s~ .
It was thus believed that the radiative heat transfer is
essentially negligible as compared to the forced con-
vection even though the temperature of the moving
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surface could be as high as 1750°C. This finding was
later verified numerically by Bourne and Dixon [21].

It is noted that the surface temperature of the mov-
ing surface was assumed uniform in the previous stud-
ies [4, 7,8, 11-14]. As pointed out by Tsou et al. [7} and
Moutsoglou and Chen [12], changing the boundary
condition of a moving surface from uniform wall tem-
perature to uniform wall heat flux could increase the
heat transfer coefficient by 30~70%. Unfortunately,
the surface condition of the continuous moving sheet
is neither uniform wall temperature nor uniform sur-
face heat flux. To evaluate the surface temperature
of a moving cylinder. Griffith [17] solved the heat
conduction problem inside the cylinder by means of
Duhamel’s theorem. The heat transfer coefficient
ho(x) used in the calculation was estimated from
results based on the uniform wall temperature case.
Such a treatment cannot observe the effect of the heat
capacity ratio of the materials and the ambient fluid.
In addition, Griffith's analysis is restricted to the con-
ditions of Pr= o0 and k = k,. Another attempt to
study the surface temperature of a moving cylinder
was made by Kuiken [18]. However, his analysis is
limited 1o 4x/(Pe, D) « | because of the use of pen-
etration theory in solving the heat conduction equa-
tion inside the cylinder. To investigate the effect of
heat capacity ratio of the sheet and the surrounding
fluid, Erickson er al. [5] assumed that the thermal
conductivity of the sheet material is infinite and/or the
thickness of the sheet is sufficiently small such that the
temperature of the sheet depends only on the axial
coordinate, i.e. T, = T(x). This same assumption was
also employed by Kuiken [9] and Bourne and Dixon
[21].
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Cp specific heat at constant pressure
Dke 'K

D diameter of cvlinder [m]

b transformed stream function. Yo vy

g gravitational acceleration. 9.81 m s~ *

Gr,,  Grashof number, gB|T,— T, |H "

H thickness of the moving sheet [m]

hg cooling coefficient on the surface of the
moving sheet, Q. /(T,—T.)

k thermal conductivity of the fluid
(Wm-'K™

k, thermal conductivity of the sheet
Wm 'K Y

Pe,  Peclet number of the moving sheet,
uyH g

Pr Prandtl number of the fluid, v/x

overall heat transfer rate of the sheet

defined by equation (9)

O. heat flux on the surface of the moving

sheet [W m™?

Reynolds number. uoH. v

Reynolds number, uyx/v

T temperature of the fluid [K]

T, temperature inside the sheet [K]

T, temperature of the moving sheet at v = 0
K]

T, temperature of the fluid at y = x [K]

prescribed tolerance of numerical

crror.defined in equation (12)

NOMENCLATURE
b decaying coeflicient defined in equation u, drawing speed of the continuous sheet (
(13) fms™']
Bi(&) Biot number of the moving sheet. i1,H A, X axial coordinate with the slot as the origin
C heat capacity ratio of the fluid and the [m]
solid. [(kpc,)/(kpe,)]' : A8 transverse coordinate measured from the

centerline of the shect [m]
ot transformed axial coordinate.
l—exp(—5h3I).

Greek symbols

o« thermal diffusivity of the fluid [m~ s ']

% thermal diffusivity of the sheet [m~ s~ ']

i volumetric coefficient of thermal
expansion [K ']

) characteristic boundary layer thickness.
x(Re) '*

n transformed transverse coordinate,
2y/H—1ify < H2and (y—H/2)/d1if
y=H?2

0 dimensionless temperature of the fluid,
(T-T)HUT,—-T,)

0(&.0)

kinematic viscosity fm= s~ ']

¢ transformed axial coordinate. 4x:(Pe H)
P density of the fluid [kg m ]

Ps density of the sheet material [kgm ]

a index, 1 for buoyancy assisting flow and
— 1 for buoyancy opposing flow
dimensionless temperature inside the
moving sheet, (T,—7.,)/(T,—T,)
$(£.0)

1/ stream function [m=s ']

Q buoyancy parameter. (Gr,,: Rej){(Pe,id).

Aside from refs. [8. 11. 12]. the effect of the buoy-
ancy force resulting from the temperature differences
in the fluid were neglected in all of the previous studies.
In their experimental work. Griffin and Throne [8]
employed an isothermal belt that moved through a
surrounding air of 75 F while the surface temperature
of the belt was essentially held at 175 F. The Reynolds
number was less than 60000 such that the boundary
layer flow in this experiment was laminar. Due to the
buoyancy effect. the measured Nusselt number values
were found to be 10-60% larger than the prediction
without the buoyancy cffect [4]. Recently. Chen and
co-workers [11, 12] considered the buoyancy effects
in a boundary layer induced by a continuous moving
isothermal sheet by the use of the local non-similarity
method. Their Nussclt number results seemed to agree
with measurements [8] to within the experimental
error.

In the present study. cooling of a continuous mov-
ing sheet of finite thickness is investigated. Conjugate

heat transfer consisting of the non-similar thermal
boundary layer and the heat conduction inside the
moving sheet will be solved by using the weighting
function scheme proposed in ref. [22]. In the solution
procedure, the temperature distribution along the
solid—fluid interface is guessed such that the tem-
peratures in fluid and solid regions can be solved
separately. The interface temperature then is adjusted
until the cnergy conservation law on the solid—fluid
interface is satisfied within a prescribed tolerance.
Such a conjugate heat transfer problem (a non-similar
thermal boundary layer and a solid of finite thickness)
has not been studied in the past.

THEORETICAL ANALYSIS

Consider a continuous flat shect that has a finite
thickness H. The sheet originates from a slot and is
moving vertically with a constant velocity u, through
an otherwise quiescent fluid at temperature 7, . Duc
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to the no-slip condition of a viscous fluid on a solid
boundary, boundary layer flows will be induced on
both sides of the flat sheet. As in conventional studies,
the positive x coordinate is measured along the direc-
tion of the moving sheet with the slot as the origin.
The positive  having a direction normal to the sheet
surface is measured from the centreline of the sheet.
The moving speed of the flat sheet is assumed
sufficiently large such that the axial conduction inside
the sheet is negligible. This assumption leads also to
a uniform temperature distribution across the thick-
ness of the sheet at x =0, i.e. T,(0,y) = T,. After
introducing the dimensionless transformation

E=4x/{(Pe,H), n=2y/H—1
= (T, —TH)To-T,) (D

the heat conduction problem inside the flat sheet
becomes

0¢/0¢ = ¢"
dO0.m =1 ¢ -1D=0, ¢¢0)=0¢, (2

where the primes denote partial differentiation with
respect to 5. The boundary condition at n = —1 is
assigned insulated owing to the symmetry of the ther-
mal boundary layers adjacent to both sides of the
vertical flat sheet. The temperature distribution along
the sheet surface ¢,,(£) will be determined such that
an energy balance equation at the interface of the flat
sheet and the ambient fluid is satisfied.

As demonstrated in Appendix A of ref. [23], by
introducing the dimensionless transformation

¥ =vxf(¢.m/d, & =4x/(Pe,H), n=(y—H/2)/é
3(x) = x(Re)™ "2, 8=(T—TI)(To—T.) (3)

the conservation equations for the induced boundary
layer flows become

J" 2 f"+0Q80 = S(fef /0L~ 172 f]0)
0"+ 1Pr [0 = Pri(f/00/08—0'0£108).  (4)

Again, the primes stand for partial differentiation with
respect to . The associated boundary conditions are
now

S0 =/(0)—-1=/"(§x0)=0
0(£,0) = 0.(S), 6(&, 00) =0. &)

In equation (4), o = 1 stands for buoyancy assisting

flow and 6 = —1 for buoyancy opposing flow. The
buoyancy parameter QQ is defined by
Q = (Gru/Rei;)(Pe,/4). 6

It should be noted here that & = 4x/(Pe, H) has
been used in both dimensionless transformations (1)
and (3) such that a compatible transformed axial
coordinate between the flat sheet and the boundary
layer flow can be achieved. The energy conservation
law at the interface of the flat sheet and the fluid can
be expressed as
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$.(8) = 0,.(%)
¢'(5.0)/0(5.0) = C(Pr&y~"? o

where C = [(kpc,)/(kpc,),]' * is the heat capacity ratio
of the fluid and the continuous moving sheet.

In summary, it is concluded that equations (2),
(4). (5) and (7) constitute a conjugate heat transfer
problem. For given values of 6. Q, Pr and C, there
uniquely exists a solution for ¢(<$, 1) and 6(&.1). Once
the conjugate heat transfer problem is solved. the
physical quantities of interest such as the Biot number
distribution Bi(¢) and the dimensionless overall heat
transfer rate g(£) are evaluated by

Bi($) = hoHlk, = —(2/¢.)9'(£.0) ®

q(%) = l—f_l ¢(E.m)dn €

where the heat transfer coefficient 4, is defined by
O0w(x) = ho(Ty,—T,) = —k,6T,(x, H2)jéy. (10)

Using equations (7), the Biot number (8) can also be
determined by

Bi(&) = =2C(Pré&)™ "20°(2.0)/0,(8). (1)

It is important to note that when (pc,)/(pc,), < 1,
the value of the heat capacity ratio C becomes zero.
This leads to an insulation condition for the moving
sheet (Bi(&) = 0) as observable from equation (11).
Thus, the interface temperature can be assumed
uniform ¢,,(&) = 0,(8) =1 under this particular
situation. Such an assumption greatly simplifies the
problem and thus has been widely employed by pre-
vious investigators [4. 7, 8, 11-14]. However, C =0
and Bi(&) = 0 could arise also from the condition
kik,« 1 when the moving sheet has a very large
thermal conductivity. Unfortunately. this condition
(C =0 and Bi =0) does not imply 7, = T,(x) when
(pc,)/(pc,), has a finite value. Therefore, the analyses
performed previously [5, 9. 21] do not satisfy equation
(8). because they assumed a non-zero Biot number
distribution when k, = oc.

METHOD OF SOLUTION

Before solving equations (2), (4) and (5), the dimen-
sionless temperature distribution along the solid-
liquid interface ¢,(&) or 0,(£) must be guessed. For-
tunately, both heat transfer problems in equations (2)
and in equations (4) and (5) are of parabolic type.
One thus needs to guess only a single value for ¢,,(&) at
the ‘present’ location ¢ during the solution procedure
from ¢ = 0 to oo. Based on the guessed ¢,(¢) value,
equations (2), (4) and (5) are solved and the tem-
perature gradients ¢'(£,0) and ¢'(¢,0) are evaluated
from the updated solution of ¢(&, ) and 0(&,n). The
value of ¢,(£) then is refined and the numerical pro-
cedure is repeated until the energy balance equation
(7) is satisfied within a prescribed tolerance TOL, i.e.
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16'(2,0)/0(,00~C(Pr&)~" | < TOL.  (12)

This numerical procedure seems to be quite
straightforward. However, as can be seen from equa-
tion (12). the value of ¢’(0.0) should have an infinite
value at the singular point ¢ = 0. Numerical instability
thus might arise from this particular point if a coarse
step size A¢ is employed. Theoretically speaking, the
local Biot number at & = 0 should be infinite, because
the thickness of the boundary layer is zero there. The
value of the local Biot number. however. decreases
rapidly along the axial direction due to an increasing
boundary layer thickness. Thus. small step size A is
required in the region of ¢ = 0.

To remedy this numerical difficulty, the axial coor-
dinate ¢ was transformed onto the --coordinate as
suggested by Lee [24]. i.e.

(13)

where the decaying coefficient 4 is to be assigned such
that a desired grid system in the ¢-coordinate can be
generated, while the grid in the z domain is uniformly
distributed.

Numerical difficulties might also arise in solving
the system of coupled, non-linear partial differential
equations (4) and (5). As mentioned earlier, the value
of B,(z) or ¢.(z) will be guessed in the solution pro-
cedure. However, the error in the guessed 0,,(z) could
result in a diverging result, especially when a large
value is assigned to the heat capacity ratio C such that
the function 6,(z) has a strong variation on z. This
numerical difficulty will become even more serious as
the Prandtl number has a large value. For a large
Prandtl number, the thickness of the thermal bound-
ary layer is very small compared to that of the momen-
tum boundary layer. Such a situation is known as
a ‘stiff boundary layer’. Fortunately, the weighting
function scheme proposed in ref. {22] along with the
axial coordinate transformation (13) was found to
solve the stiff problems very efficiently in the present
investigation.

RESULTS AND DISCUSSION

Numerical results were obtained for the case of
buoyancy assisting flow (¢ = 1) for Prandtl numbers
of 0.7. 7 and 100. They cover the buoyancy parameters
Q=0.0.1, 1. 5 and 10 and the heat capacity ratios
C=0.1, 0.2, 0.5 and 1.0 for each Prandtl number.
The domain of computations was 0 <7 < 10 and
0 < & < 5.037. The decaying coefficient b employed in
equation (13) was 0.4. The step size An = 0.05 and

= = 1/150 was found to be adequate for all par-
ameters that were investigated in the present study.
All computations were performed on a CDC Cyber
840 computer.

As an illustration, the velocity profiles for Pr =7,
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0.1
0.01
0.0

F1G. 1. The velocity profile in the boundary laver flow for
thecase of Pr=7.Q = Sand C = 0.5.

Q=35 and C = 0.5 are plotted in Fig. 1 for various
axial locations. The buoyancy effects were found to
exist in a thin layer adjacent to the wall (0 < < 1).
Thus, in Fig. 1, the velocity profiles are presented vs
the normal coordinate ' * for a better observation
on the buoyancy effects. Note that the non-similar
boundary layer equation (4) reduces to the Blasius
equation if the buoyancy effects are neglected (2 = 0).
The velocity thus possesses similarity solution under
this particular situation. Note also that the buoyancy
effects vanish at the slot region as can be seen by
substituting ¢ = 0 into equation (4). Therefore, the
curve labelled with ¢ = 0 in Fig. 1 represents also the
case of no buoyancy effect. From Fig. 1, one observes
that the velocity profile overshoots by 40% at
& = 5.037. This implies that the buoyancy force could
have a significant effect on the heat transfer.

Figure 2 reveals the temperature variations for the
same parameters employed in Fig. 1. The region
—1 < 5 < 0 stands for the temperature ¢(&,n) inside
the continuous sheet, whereas the region # > 0 stands
for the temperature of the fluid. The position y = 0 is
the solid—fluid interface. It is important to note that
the interface temperature ¢, (&) decreases rapidly in a
region near the slot (¢ ~ 0) due to a small thermal
boundary layer thickness. However, the temperature
at the centreline of the sheet does not have a fast
response to the cooling process. Therefore, it is

10 7T LEBRELI S R R R S
02534 4
08+ Pr=7 -
0. r=
t 89,7 a=5 -
06 2201 ~  C:05 1
N . J
5.037
o4 B
02 B
O. 1 1 1 1 1 J. 1 L
0—1 0 1 2
n

F1G. 2. The temperatures inside the sheet (7 < 0) and in the
boundary layer (n = 0) for the case of Pr=7, Q=5 and
C =05
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Fi1G. 3(a). Effect of heat capacity ratio on the Biot number
for Pr=0.7 and Q = 0.1.
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Fi1G. 3(b). Effect of heat capacity ratio on the surface tem-
perature of the sheet for Pr = 0.7and Q = 0.1.
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FI1G. 3(c). Effect of heat capacity ratio on the overall heat
transfer rate for Pr = 0.7and Q = 0.1.

improper to assume T, = T,(x) if the value of ¢ is
small in the entire observation length. This phenom-
enon exists when the moving speed and/or the thick-
ness of the sheet have large values such that the value
of the parameter (Pe, H)/4 becomes very large.

The effects of the capacity ratio C on the Biot
number Bi({), the surface temperature ¢,,(¢) and the
overall heat transfer rate g(£) are shown, respectively,
on Figs. 3(a)~(c) for the case of Pr = 0.7and Q = 0.1.

It is interesting to note from Fig. 3(a) that the vari-
ation of the Biot number along the axial coordinate ¢
approximates a steep straight line in full logarithmic
graph paper. This means that the Biot number pos-
sesses a strong power-law variation along the axial
direction. For instance. for the case C = 1.0, the Biot
number decreases from 5.03 at ¢ = 0.01 to 0.161 at
Z = 5. The Biot number increases greatly when the
heat capacity ratio increases. The large Biot number
value existing in the slot region (¢ ~ 0) causes a rapid
decrease in the surface temperature ¢,,(<) in the region
< < 0.1 as can be observed from Fig. 3(b). This effect
becomes more pronounced when the value of the heat
capacity ratio is increased. Nevertheless, the tem-
perature at the centreline of the sheet could be still
high (see Fig. 2). This results in a large transverse
temperature gradient inside the sheet. Such a strong
temperature variation is believed to have a significant
effect on the material structure. As expected, it can be
observed from Fig. 3(c) that the heat capacity ratio C
has a considerable effect on the heat transfer rate (the
fraction of heat removed). This finding is consistent
with physical reasoning.

Figures 4(a)—(c). respectively. show the effect of
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F1G. 4(a). Effect of buoyancy force on the Biot number for
Pr=07and C=0.1.
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FiG. 4(b). Effect of buoyancy force on the surface tem-
perature of the sheet for Pr = 0.7 and C = 0.1.
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F16. 4(c). Effect of buoyancy force on the overall heat trans-
fer rate for Pr = 0.7 and C = 0.1.

the buoyancy parameter Q on the Biot number, the
surface temperature and the overall heat transfer rate
for the case of Pr = 0.7 and C = 0.1. From Fig. 4(a),
one sees that the curves of the Biot number based
on various -values merge into the one without the
buoyancy effect (Q = 0) at ¢ = 0. This is because the
buoyancy effects vanish there as mentioned earlier. In
downstream locations, however, an assisting buoy-
ancy force could increase the velocity (see Fig. 1) by
40% or more and thus could enhance the heat transfer
by a large amount. For example, for the case Q = 10
and the location ¢ = 5. the buoyancy force increases
the Biot number from 0.0330 to 0.0600, decreases the
surface temperature from 0.840 to 0.748 and increases
the overall heat transfer rate from 0.1546 to 0.2439.
These effects can be observed. respectively, from Figs.
4(a) to (c).

Finally. the influences of the Prandtl number on the
Biot number. the surface temperature and the overall
heat transfer rate are presented, respectively, in Figs.
5(a)—(c). From these figures. an increase in the Prandtl
number is found to increase the Biot number. decrease
the surface temperature and thus increase the overall
heat transfer rate. However. the effect of the Prandtl
number is far less significant than that of the heat
capacity ratio (sce Figs. 3(a)—(c)). In general, liquid
has a larger Prandtl number and a larger heat capacity
(kpc,) than a gas. Therefore, using a liquid as the
cooling medium a better cooling performance could
be obtained than using a gas. Based on the present
results, it is concluded that most of the good cooling
performance of a liquid comes from its large heat
capacity.

CONCLUSION

Conjugate heat transfer consisting of heat con-
duction inside a continuous moving sheet and mixed
convection in the induced boundary layer flow is
investigated by employing the weighting function
scheme. When a coarse step size is used, numerical
instability could arise in a region near the slot (¢ x 0)
because of a rapid decrease in the temperature of

1.0 T T U117 T ITHHI’ T [vllﬂ
7R j
Jf e 1
) r 100 4
Bi L 7 4
|
1
0.1 = Q=01 _.:
7+ -
[ = 4
o C =01 5
F —J‘
r .
2 1| IHIH; ! “H_Lli Ji Hllé

<2 L 7Rt 2 L7 2 “ 7
16° 2 10 12 10

€ = bx/PeH

FIG. 5(a). Effect of Prandtl number on the Biot number for
Q=0.1and C=0.L
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08 I
07 1 1llllll! i1 Illlll‘ bood ol
TR LT i 2 A T S AT
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FiG. 5(b). Effect of Prandtl number on the surface tem-
perature of the sheet for Q = 0.1 and C = 0.1.
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015 7 1
L 0.7 ]
0.05+— i
Tl p ool Ll
wr o+ 7 AT
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FiG. 5(c). Effect of Prandtl number on the overall heat
transfer rate for Q = 0.1 and C = 0.1.

the solid—fluid interface. To remedy this numerical
difficulty. a coordinate transformation is performed
in the axial direction. From the numerical results, the
buoyancy force is seen to have a significant effect on
the Biot number, surface temperature of the moving
sheet and the overall heat transfer rate. The heat
capacity ratio, however, is the most important par-
ameter in the present conjugate heat transfer problem.
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A large heat capacity ratio results in a large Biot
number. This causes a rapid decrease in the surface
temperature of the sheet in the region & < 0.1. Thus,
it is improper to assume a uniform temperature dis-
tribution across the thickness of the moving sheet in
that region. In general, a liquid has a larger Prandtl
number and a larger heat capacity than a gas. There-
fore, using a liquid as the cooling medium a better
cooling performance could be obtained than using a
gas. Based on the present results, it is concluded that
most of the good cooling performance of a liquid
comes from its large heat capacity.
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REFROIDISSEMENT D'UNE FEUILLE D'EPAISSEUR CONSTANTE ET MOBILE EN
PRESENCE DE CONVECTION NATURELLE

Résumé—On étudie le refroidissement d’une feuille en mouvement continu en prenant en compte les forces
de flottement. La distribution de température le long de I'interface solide-fluide est déterminée en résolvant
un probléme de transfert thermique conjugué de conduction dans la feuille et de convection mixte adjacente
a la surface de la feuille. Pour une meilleure stabilité numérique. on emploie le schéma de fonction de
pondération avec une transformation de coordonée axiale pour résoundre les équations transformeées de
couche limite. 1l existe trois parameétres qui sont le nombre de Prandtl du fluide Pr, le paramétre de
flottement Q et le rapport des capacités thermiques C. Des résultats numériques incluant le nombre de
Biot. la tempeérature de surface et le flux global transféré sont présentés pour 0,7 < Pr<100,0<Q <10
et0,l < C <1. La force de flottement a un effet sensible sur les résultats. Néanmoins le rapport des capacités
thermiques est le paramétre le plus important. On conclut qu'avec un liguide, utilis¢ comme fluide de
refroidissement, on obtient un meilleur refroidissement qu'avec un gaz, ceci parce que le liquide a une
capacité thermique plus grande que le gaz. Le nombre de Prandtl n’a qu’un effet minime.
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KUHLUNG EINER STETIG BEWEGTEN PLATTE BEGRENZTER DICKE BEI
NATURLICHER KONVEKTION

Zusammenfassung—In der vorliegenden Arbeit wird die Kihlung einer stetig bewegten Platte begrenzter
Dicke untersucht. Dabei werden auch Auftriebseffekte beriicksichtigt. Die Temperaturverteilung entlang
einer fest-fliissigen Grenzflache ergibt sich aus einem gekoppelten Wirmeilbertragungsproblem. Innerhalb
der Platte findet Wirmeleitung statt. an der Plattenoberfliche tritt erzwungene Mischkonvektion auf.
Um die numerische Stabilitdt zu erhéhen. wird die Gewichtungsfunktion zusammen mit einer axialen
Koordinatentransformation eingesetzt. Damit werden die transformierten Grenzschichtgleichungen geldst.
Die vorliegende Arbeit zeigt drei EinfluBparameter auf: die Prandti-Zahl des Fluids Pr. den Auf-
triebsparameter Q und das Warmekapazitdtsverhiltnis C. Die Biot-Zahl. die Oberflichentemperatur und
der insgesamt von der Platte abgefilhrte Wirmestrom werden numerisch berechnet. und zwar fir
0.7< Pr<100.0<Q<10und 0.1 € C <€ 1. Es stellt sich heraus. daB die Auftriebskraft die Ergebnisse
wesentlich beeinflulit. Der wichtigste Parameter ist jedoch das Wiarmekapazitdtsverhdlinis. Die vor-
liegenden Ergebnisse lassen darauf schlieBen. daB Fliissigkeiten besser als Kithlmittel geeignet sind als
Gase. Die Ursache hierfiir liegt in der groBeren Wiarmekapazitit von Flissigkeiten. Die Prandti-Zahl ist
von untergeordneter Bedeutung.

OXJIAXJEHHME ITPU ECTECTBEHHOW KOHBEKLIMM BECKOHEUYHOW OBUXYIIENCA
MJACTHHBI KOHEYHOH TOJIHMHBI

Ausoramms—Vccnenyerca oxnaxaeHne GeCKOHEUHOM ABHKYIIEHCA I[IACTHHBI KOHEYHOH TOJUIMHBL C
YYETOM BJIHSHUS NOXbeMHOMH CHIIBL. Pacnpenenenne TeMnepaTyp Ha IpaHHLC pas3ziena TBEPHOTO Tesa H
XKHIKOCTH ONpEIe/IfeTCA MyTEM PEUICHAS CONPAXCHHOH 3afiavyn TeIUlonepeHoca, 06yCloBIeHHOro Ten-
JIONPOBOANOCTBLIO BHYTPH IUIACTHHB M CMEIIaHHONX CBOGOAHOM H BBIHYKICHHOW KOHBEKLMENR OKOJIO ee
NOBEPXHOCTH. [l ynydlleHHs YCTOHYMBOCTH YHCJIEHHOrO CUeTa NPH PEUIeHHH NMpeo6pa3oBaHHBIX YpaB-
HEHHil NOrpaHNYHOTO C/OA MCMONb3YETCH CXeMa BecoBMX (PyHKUMHM, a Takke TpaHcHOPMALMSA OCeBON
KOODAHHATH. B IaHHOM HCCNENOBaHHHM YCTRHOBJICHB! TPH CYLUCCTBEHHBIX NapaMeTpa, a HMEHHO, YHCIA
Ipanntas xunkocti Pr, napamMeTpa noabeMHOH CHIIEL { H OTHOIIEHHA TennoemkocTed C. Uncnennsie
pe3yabTaThi, onpeenslomue yueaa buo, TeMnepaTypy NoBepXHOCTH M OOLIYI0 HHTCHCHBHOCTDb TEILIO-
NEPEHOoCa MIACTHHBL NpencrasieHbl s 0,7 < Pr < 100,0 < Q € 10 1 0,1 < C < 1. OueBuano, 410 y4eT
NOXbEMHOM CHJIBI OKa3bIBAET CYIUECTBEHHOE BIIHAHHE Ha pe3ynabTaThl. ONHaKo, Hanbosiee BaXHBIM napa-
METPOM SBJISETCA OTHOLIEHHE TernoeMkocteil. Ha ocHOBe AaHHBIX Pe3yNbTATOB CAENAHO 3AKMIOUEHHE O
TOM, YTO MCMOJIb30BAaHHE KHIKOCTH B KaYecTpe oXjaxaamolueH cpenbi sBiasercd Gonee 3pPeKTHBHLIM,
4eM HCTIONIL30BAHHE rasa, T.K. €€ TeII0eMKOCTh Gonbiue. Iddext uncna [Ipanaris HesHauHTeNeH.



