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Abstract-The present investigation studies the cooling of a continuous moving sheet of finite thickness. 
The effect of the buoyancy force is also taken into account. The temperature distribution along the solid- 
fluid interface is determined by solving a conjugate heat transfer problem that consists of heat conduction 
inside the sheet and induced mixed convection adjacent to the sheet surface. For a better numerical 
stability, the weighting function scheme along with an axial coordinate transformation is employed to 
solve the transformed boundary layer equations. Three parameters are found to exist in the present 
investigation. They are the Prandtl number of the fluid Pr, the buoyancy parameter R and the heat capacity 
ratio C. Numerical results including the Biot number. the surface temperature and the overall heat transfer 
rate of the sheet are presented for 0.7 < Pr < 100. 0 < R $ 10 and 0.1 < C < I. The buoyancy force is 
seen to have a significant effect on the results. The heat capacity ratio, however, is the most important 
parameter. Based on the present results, it is concluded that using a liquid as the cooling medium could 
obtain a better cooling performance than using a gas. This is because the liquid has a larger heat capacity 

than a gas. The Prandtl number has only a minor effect. 

INTRODUCTION 

IT IS A common method to draw a hot material 
through a slot (or an orifice) in sheet (or fibre) manu- 
facturing. In these industrial processes, control of the 
cooling rate of the sheets’(or the fibres) is very impor- 
tant to obtain a desired material structure. As the 
continuous sheets (or fibres) move through a cooling 
tank or atmosphere, they are cooled by the boundary 
layers induced on their surfaces due to the viscous 
force. The induced boundary’layers were found to 
dominate the cooling rate of the sheets (or fibres) and 
have been extensively studied by many investigators 
for continuous moving sheets [l-14] and cylinders 
[1, 3, 15-211. 

Sakiadis [ 1, 21 was the first investigator to analyse 
the boundary layer flow induced on a continuous 
moving sheet. Later, his predicted velocity profile was 
verified by the experiments performed by Tsou er al. 
[6,7]. This indicates that the mathematically described 
boundary layer on a continuous moving surface is a 
physically realizable flow. Tsou et al. [6] found also 
that the critical Reynolds number is about 4.96 x lo6 
on a continuous moving sheet as compared to 
0.949 x lo5 on a classic Blasius flow. Hence, the 
induced boundary layer flow on a moving sheet is 
practically laminar. In their experimental study on 
cooling time of silica fibres, Arridge and Prior [16] 
found that the temperatures of the silica fibres fol- 
lowed Newton’s cooling law as they decreased from 
1750 to 150°C at a moving speed of 1.78-5.08 m s- ‘. 
It was thus believed that the radiative heat transfer is 
essentially negligible as compared to the forced con- 
vection even though the temperature of the moving 

surface could be as high as 1750°C. This finding was 
later verified numerically by Bourne and Dixon [21]. 

It is noted that the surface temperature of the mov- 
ing surface was assumed uniform in the previous stud- 
ies [4,7,8,1 l-141. As pointed out by Tsou et al. [7j and 
Moutsoglou and Chen [12], changing the boundary 
condition of a moving surface from uniform wall tem- 
perature to uniform wall heat flux could increase the 
heat transfer coefficient by 30-70%. Unfortunately, 
the surface condition of the continuous moving sheet 
is neither uniform wall temperature nor uniform sur- 
face heat flux. To evaluate the surface temperature 
of a moving cylinder. Griffith [ 171 solved the heat 
conduction problem inside the cylinder by means of 
Duhamel’s theorem. The heat transfer coefficient 
h&) used in the calculation was estimated from 
results based on the uniform wall temperature case. 
Such a treatment cannot observe the effect of the heat 
capacity ratio of the materials and the ambient fluid. 
In addition, Griffith’s analysis is restricted to the con- 
ditions of Pr = 30 and k = k,. Another attempt to 
study the surface temperature of a moving cylinder 
was made by Kuiken [18]. However, his analysis is 
limited to rlx/(Pe,D) << 1 because of the use of pen- 
etration theory in solving the heat conduction equa- 
tion inside the cylinder. To investigate the effect of 
heat capacity ratio of the sheet and the surrounding 
fluid, Erickson et ul. [5] assumed that the thermal 
conductivity of the sheet material is infinite and/or the 
thickness of the sheet is sufficiently small such that the 
temperature of the sheet depends only on the axial 
coordinate, i.e. r, = T,(X). This same assumption was 
also employed by Kuiken [9] and Bourne and Dixon 
1211. 
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NOMENCLATURE 

h decaying coefficient defined in equation II,, drawing speed of the continuous sheet 

(13) ]ms ‘I 
LX(<) Biot number of the moving sheet. h,,H X, .\- axial coordinate with the slot as the origin 
c heat capacity ratio of the fluid and the [ml 

solid. [(kpc,) ‘(kpc,,,),] ’ ’ J’ transverse coordinate measured from the 

(‘,a specific heat at constant pressure centerline of the sheet [m] 
[J kg- ’ K- ‘1 : transformed axial coordinate. 

D diameter of cylinder [m] I -exp (-h<). 
f’ transformed stream function. +;i Y.Y 

!/ gravitational acceleration. 9.8 1 m 5 ’ 

GI, Grashof number, g/3] T,, - T, ]H ‘, 1.: Greek symbols 
H thickness of the moving sheet [m] 2! thermal diffusivity of the fluid [m’ s ‘1 

110 cooling coefficient on the surface of the thermal diffusivity of the sheet [m’ s- ‘1 
moving sheet. Q_/( T, - T,~) ; volumetric coefficient of thermal 

ii thermal conductivity of the fluid expansion [K ‘1 
[Wm.‘Km’] (i characteristic boundary layer thickness. 

k, thermal conductivity of the sheet .x(Rr,)- ’ 2 
[W mm’ Km’] ‘1 transformed transverse coordinate. 

Pe, Peclet number of the moving sheet. 7~,!‘H-l if?, < H’2 and (~.-H,‘2)!5if 
Ll,,H:Zi, j‘ > H:2 

Pf Prandtl number of the fluid. if/~ (1 dimensionless temperature of the fluid, 

q(5) overall heat transfer rate of the sheet (r-r,)‘(T,,-T,) 
defined by equation (9) o,(t) (I(<. 0) 

Qw heat flux on the surface of the moving 1’ kinematic viscosity (m’s ‘1 
sheet [W m _ ?] i’ transformed axial coordinate. 4.1. (Pe, H) 

Re, Reynolds number. u&v P density of the fluid [kg m ‘1 

Re, Reynolds number. u,,.Y:v PC density of the sheet material [kg m ‘1 
T temperature of the fluid [K] fJ index. 1 for buoyancy assisting flow and 

T, temperature inside the sheet [K] _ 1 for buoyancy opposing flow 

T,, temperature of the moving sheet at s = 0 4 dimensionless temperature inside the 

WI moving sheet. (T, - T, )! (T,,- T, ) 
T, temperature of the fluid at J’ = 5; [K] 4,(r) &ir. 0) 
TOL prescribed tolerance of numerical * stream function [m’ s ‘1 

error defined in equation ( 12) Q buoyancy parameter. (G,.,, Rr,)( Pc,‘4). 

Aside from refs. [X. I I. I?]. the effect of the buoy- heat transfer consisting of the non-similar thermal 

ancy force resulting from the temperature differences 
in the fluid were neglected in all of the previous studies. 
In their experimental work. Griffin and Throne [8] 
employed an isothermal belt that moved through a 
surrounding air of 75 F while the surface temperature 

of the belt was essentially held at I75 F. The Reynolds 
number was less than 60000 such that the boundary 
layer flow in this experiment was laminar. Due to the 
buoyancy effect. the measured Nusselt number values 
were found to be IO-60% larger than the prediction 
without the buoyancy effect [4]. Recently, Chen and 
co-workers [I 1, I ?] considered the buoyancy effects 
in a boundary layer induced by a continuous moving 
isothermal sheet by the use of the local non-similarity 
method. Their Nussclt number results seemed to agree 
with measurements [g] to within the experimental 
error. 

In the present study. cooling of a continuous mov- 
ing sheet of finite thickness is investigated. Conjugate 

boundary layer and the heat conduction inside the 
moving sheet will be solved by using the weighting 
function scheme proposed in ref. [Xl. In the solution 
procedure, the temperature distribution along the 
solid-fluid interface is guessed such that the tem- 
pcratures in fluid and solid regions can be solved 
separately. The interface temperature then is adjusted 
until the energy conservation law on the solid-fluid 
interface is satisfied within a prescribed tolerance. 
Such a conjugate heat transfer problem (a non-similar 
thermal boundary layer and a solid of finite thickness) 
has not been studied in the past. 

THEORETICAL ANALYSIS 

Consider a continuous flat sheet that has a finite 
thickness H. The sheet originates from a slot and is 
moving vertically with a constant velocity u(, through 
an otherwise quiescent fluid at tcmpcrature T, DUC 
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to the no-slip condition of a viscous fluid on a solid 
boundary. boundary layer flows will be induced on 
both sides of the flat sheet. As in conventional studies, 
the positive x coordinate is measured along the direc- 
tion of the moving sheet with the slot as the origin. 
The positive J’ having a direction normal to the sheet 
surface is measured from the centreline of the sheet. 
The moving speed of the flat sheet is assumed 
sufficiently large such that the axial conduction inside 
the sheet is negligible. This assumption leads also to 
a uniform temperature distribution across the thick- 
ness of the sheet at x = 0, i.e. T,(O,_r) = T,. After 
introducing the dimensionless transformation 

5 = 4xl(Pe, H). 4 = 2_r/H- 1 

4 = (T,-T,)/(T,-T,) (1) 

the heat conduction problem inside the flat sheet 
becomes 

d40,rl) = 1, 4'(5> -1) = 0, 9(5~0)=4,(5) (2) 
where the primes denote partial differentiation with 
respect to q. The boundary condition at rl = - 1 is 
assigned insulated owing to the symmetry of the ther- 
mal boundary layers adjacent to both sides of the 
vertical flat sheet. The temperature distribution along 
the sheet surface 4,(t) will be determined such that 
an energy balance equation at the interface of the flat 
sheet and the ambient fluid is satisfied. 

As demonstrated in Appendix A of ref. [23], by 
introducing the dimensionless transformation 

ti = vxf (5, tlM, 5 = 4.W’es HA 9 = (Y -H/2)/~ 

6(.x) = x(Re.,)-’ ‘, 6 = (T-T,)/(T,-T,) (3) 

the conservation equations for the induced boundary 
layer flows become 

.f”‘+ :JT + ~~58 = ~(f’2f’/a< -f"aflay) 

O"+ iPrf& = Pr t(f'aojag-o'af/ag). (4) 

Again. the primes stand for partial differentiation with 
respect to q. The associated boundary conditions are 
now 

f(L0) =.f'(<.O)-1 =f'(T,co) = 0 

O(<,O) = O,.(5), &&CO)= 0. (5) 

In equation (4). (T = 1 stands for buoyancy assisting 
flow and o = - 1 for buoyancy opposing flow. The 
buoyancy parameter R is defined by 

R = (Gr,/Rei)(Pe,/4). (6) 

It should be noted here that 5 = 4x/(Pe, H) has 
been used in both dimensionless transformations (1) 
and (3) such that a compatible transformed axial 
coordinate between the flat sheet and the boundary 
layer flow can be achieved. The energy conservation 
law at the interface of the flat sheet and the fluid can 
be expressed as 

(v(~,o)/e’(~.o, = C(Pri’)_’ ? (7) 

where C = [(kpcP)/(kpc,,),] ’ ’ is the heat capacity ratio 
of the fluid and the continuous moving sheet. 

In summary, it is concluded that equations (2). 
(4), (5) and (7) constitute a conjugate heat transfer 
problem. For given values of o. R, Pr and C. there 
uniquely exists a solution for 4(& q) and O(<, r~). Once 
the conjugate heat transfer problem is solved. the 
physical quantities of interest such as the Biot number 
distribution Si(<) and the dimensionless overall heat 
transfer rate q(t) are evaluated by 

Si(<) = h,H/k, = - (2/4,)@(<.0) (8) 

5 

0 
q(5) = 1 - _ , 4(L rl) dv (9) 

where the heat transfer coefficient h, is defined by 

Q,&) = h&-,, -TX) = -k,?~S(.v, H/2)/6y. (10) 

Using equations (7) the Biot number (8) can also be 
determined by 

Si(t) = -2C(Pr& ’ ‘0’(<. 0)/O,(<). (11) 

It is important to note that when (pc,)/(pc,,), << 1, 
the value of the heat capacity ratio C becomes zero. 
This leads to an insulation condition for the moving 
sheet (E(c) = 0) as observable from equation (11). 
Thus, the interface temperature can be assumed 
uniform 4.,,(t) = 0,(c) = 1 under this particular 
situation. Such an assumption greatly simplifies the 
problem and thus has been widely employed by pre- 

vious investigators [4. 7, 8. 1 l-141. However, C = 0 
and Si(<) = 0 could arise also from the condition 
k/k, c 1 when the moving sheet has a very large 
thermal conductivity. Unfortunately. this condition 
(C = 0 and Bi = 0) does not imply T, = T,(s) when 
(pc,,)/(pc,,), has a finite value. Therefore. the analyses 
performed previously [5,9.21] do not satisfy equation 
(8). because they assumed a non-zero Biot number 
distribution when k, = zc 

METHOD OF SOLUTION 

Before solving equations (2), (4) and (5), the dimen- 
sionless temperature distribution along the solid- 
liquid interface 4,(c) or O,(l) must be guessed. For- 
tunately, both heat transfer problems in equations (2) 
and in equations (4) and (5) are of parabolic type. 
One thus needs to guess only a single value for 4,(r) at 
the ‘present’ location < during the solution procedure 
from < = 0 to xj. Based on the guessed &Jr) value, 
equations (2), (4) and (5) are solved and the tem- 
perature gradients d’(& 0) and 0’(& 0) are evaluated 
from the updated solution of&t, II) and O({, n). The 
value of&(t) then is refined and the numerical pro- 
cedure is repeated until the energy balance equation 
(7) is satisfied within a prescribed tolerance TOL, i.e. 
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[@(<,O)/Q’(;,O)-C(Pr<)-’ ‘1 < TOL. (12) 

This numerical procedure seems to be quite 
straightforward. However, as can be seen from equa- 
tion (12). the value of 4’CO.O) should have an infinite 
value at the singular point < = 0. Numerical instability 
thus might arise from this particular point if a coarse 
step size A< is employed. Theoretically speaking, the 
local Biot number at < = 0 should be infinite. because 

the thickness of the boundary layer is zero there. The 
value of the local Biot number. however. decreases 
rapidly along the axial direction due to an increasing 
boundary layer thickness. Thus. small step size A< is 
required in the region of < z 0. 

To remedy this numerical difficulty, the axial coor- 
dinate < was transformed onto the :-coordinate as 
suggested by Lee [24]. i.e. 

Z= I-exp(-h<). <= -kln(l-:) 

;_!‘Z< = h( 1 -:)?/ir (13) 

where the decaying coefficient b is to be assigned such 
that a desired grid system in the <-coordinate can be 
generated, while the grid in the 2 domain is uniformly 
distributed. 

Numerical difficulties might also arise in solving 
the system of coupled, non-linear partial differential 
equations (4) and (5). As mentioned earlier, the value 
of f?,(r) or &(z) will be guessed in the solution pro- 

cedure. However, the error in the guessed Lo, could 
result in a diverging result, especially when a large 

value is assigned to the heat capacity ratio C such that 
the function Q,.(Z) has a strong variation on Z. This 
numerical difficulty will become even more serious as 
the Prandtl number has a large value. For a large 
Prandtl number, the thickness of the thermal bound- 

ary layer is very small compared to that of the momen- 
tum boundary layer. Such a situation is known as 
a ‘stiff boundary layer’. Fortunately, the weighting 

function scheme proposed in ref. [22] along with the 
axial coordinate transformation (13) was found to 
solve the stiff problems very efficiently in the present 

investigation. 

RESULTS AND DISCUSSION 

Numerical results were obtained for the case of 
buoyancy assisting flow (0 = 1) for Prandtl numbers 
of 0.7.7 and 100. They cover the buoyancy parameters 
R = 0. 0.1, 1. 5 and 10 and the heat capacity ratios 
C = 0.1, 0.2. 0.5 and 1 .O for each Prandtl number. 
The domain of computations was 0 < q < 10 and 
0 < < < 5.037. The decaying coefficient b employed in 
equation (13) was 0.4. The step size A\rl = 0.05 and 
AZ = Ii150 was found to be adequate for all par- 
ameters that were investigated in the present study. 
All computations were performed on a CDC Cyber 
840 computer. 

As an illustration, the velocity profiles for Pr = 7, 

FIG. 1. The velocity profile In the boundary laxer ROM. for 
the case of Pr = 7. R = S and C = 0.;. 

R = 5 and C = 0.5 are plotted in Fig. I for various 
axial locations. The buoyancy effects were found to 
exist in a thin layer adjacent to the wall (0 < rr < 1). 
Thus, in Fig. 1, the velocity profiles are presented vs 
the normal coordinate 4’ ’ for a better observation 
on the buoyancy effects. Note that the non-similar 

boundary layer equation (4) reduces to the Blasius 
equation if the buoyancy effects are neglected (Q = 0). 
The velocity thus possesses similarity solution under 
this particular situation. Note also that the buoyancy 

effects vanish at the slot region as can be seen by 
substituting 5 = 0 into equation (4). Therefore, the 
curve labelled with 5 = 0 in Fig. 1 represents also the 
case of no buoyancy effect. From Fig. 1, one observes 
that the velocity profile overshoots by 40% at 
5 = 5.037. This implies that the buoyancy force could 

have a significant effect on the heat transfer. 
Figure 2 reveals the temperature variations for the 

same parameters employed in Fig. I. The region 
- 1 < q < 0 stands for the temperature d(<, q) inside 
the continuous sheet, whereas the region ‘1 b 0 stands 
for the temperature of the fluid. The position t1 = 0 is 
the solid-fluid interface. It is important to note that 
the interface temperature &(:) decreases rapidly in a 
region near the slot (5 r; 0) due to a small thermal 
boundary layer thickness. However. the temperature 
at the centreline of the sheet does not have a fast 
response to the cooling process. Therefore. it is 

FIG. 2. The temperatures inside the sheet (q < 0) and in the 
boundary layer (a > 0) for the case of Pr = 7. Cl = 5 and 

c = 0.5. 
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O.l E Pr : 0.7 7: 
- n = 0.1 

2’ 16’ = ‘ 7 16’ 2 ‘ 7 , 2 L I ,o 

6 : 4x/PesH 

FIG. 3(a). ElTect of heat capacity ratio on the Biot number 
for Pr = 0.7 and R = 0.1. 

1.0 , , ,,,,,,, , I ,,,,, f- 

0.6 - 

0.4 - 

I I11111111 ,“I&)& 
,$2 A 7 ,$ 2 ‘ 7 , * ‘ 7 ,. 

t = 4x/PesH 

FIG. 3(b). Effect of heat capacity ratio on the surface tem- 
perature of the sheet for Pr = 0.7 and R = 0.1. 

0.6 - 

?,(j’ 2 ‘ 7, I ‘ 
’ 10 

4 = ~x/PesH 

FIG. 3(c). Effect of heat capacity ratio on the overall heat 
transfer rate for Pr = 0.7 and R = 0.1. 

improper to assume T, = T,(x) if the value of 5 is 
small in the entire observation length. This phenom- 
enon exists when the moving speed and/or the thick- 
ness of the sheet have large values such that the value 
of the parameter (Pe, H)/4 becomes very large. 

The effects of the capacity ratio C on the Biot 
number Si(s), the surface temperature &(t) and the 
overall heat transfer rate q(t) are shown, respectively, 
on Figs. 3(a)-(c) for the case of Pr = 0.7 and fi = 0.1. 

It is interesting to note from Fig. 3(a) that the vari- 
ation of the Biot number along the axial coordinate < 
approximates a steep straight line in full logarithmic 
graph paper. This means that the Biot number pos- 
sesses a strong power-law variation along the axial 
direction. For instance. for the case C = I .O. the Biot 
number decreases from 5.03 at 6 = 0.01 to 0.161 at 
’ - 5. The Biot number increases greatly when the 
Lest capacity ratio increases. The large Biot number 
value existing in the slot region (< 51 0) causes a rapid 
decrease in the surface temperature 4,(j) in the region 
< < 0.1 as can be observed from Fig. 3(b). This effect 
becomes more pronounced when the value of the heat 
capacity ratio is increased. Nevertheless, the tem- 
perature at the centreline of the sheet could be still 
high (see Fig. 2). This results in a large transverse 
temperature gradient inside the sheet. Such a strong 
temperature variation is believed to have a significant 
effect on the material structure. As expected, it can be 
observed from Fig. 3(c) that the heat capacity ratio C 
has a considerable effect on the heat transfer rate (the 
fraction of heat removed). This finding is consistent 
with physical reasoning. 

Figures 4(a)-(c). respectively. show the effect of 

Bi ’ 

0.1 

7 

‘ 

FIG. 4(a). Etfect of buoyancy force on the Biot number for 
Pr = 0.7 and C = 0.1. 

I : 4x/k@ 

FIG. 4(b). Effect of buoyancy force on the surface tem- 
perature of the sheet for Pr = 0.7 and C = 0. I. 
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0.25 / , I,,,,,, , , j /,,// , , / ,, 

9 
0.15 

0.05 

710' 2 L 7, 2 ‘ ' 10 

FIG. 4(c). Effect of buoyancy force on the overall heat trans- 
fer rate for Pr = 0.7 and C = 0. I. 

the buoyancy parameter R on the Biot number, the 
surface temperature and the overall heat transfer rate 

for the case of Pr = 0.7 and C = 0.1. From Fig. 4(a), 
one sees that the curves of the Biot number based 
on various R-values merge into the one without the 

buoyancy effect (Q = 0) at < z 0. This is because the 
buoyancy effects vanish there as mentioned earlier. In 
downstream locations, however, an assisting buoy- 

ancy force could increase the velocity (see Fig. 1) by 

40% or more and thus could enhance the heat transfer 
by a large amount. For example, for the case R = IO 

and the location : = 5. the buoyancy force increases 
the Biot number from 0.0330 to 0.0600, decreases the 
surface temperature from 0.840 to 0.748 and increases 
the overall heat transfer rate from 0.1546 to 0.2439. 

These effects can be observed. respectively. from Figs. 
4(a) to (c). 

Finally. the influences of the Prandtl number on the 
Biot number. the surface temperature and the overall 
heat transfer rate are presented, respectively, in Figs. 
5(a)-(c). From these figures. an increase in the Prandtl 

number is found to increase the Biot number. decrease 
the surface temperature and thus increase the overall 
heat transfer rate. However. the effect of the Prandtl 
number is far less signilicant than that of the heat 
capacity ratio (set Figs. 3(a)-(c)). In general, liquid 
has a larger Prandtl number and a larger heat capacity 
(li~<r) than a gas. Therefore, using a liquid as the 

cooling medium a better cooling performance could 
be obtained than using a gas. Based on the present 
results. it is concluded that most of the good cooling 
performance of a liquid comes from its large heat 

capacity. 

CONCLUSION 

Conjugate heat transfer consisting of heat con- 
duction inside a continuous moving sheet and mixed 
convection in the induced boundary layer flow is 
investigated by employing the weighting function 
scheme. When a coarse step size is used, numerical 
instability could arise in a region near the slot (5 z 0) 
because of a rapid decrease in the temperature of 

FIG. 5(a). Effect of Prandtl number on the Biot number for 
Q=O.l andC=O.l. 

n I 0.1 

c : 0.1 
0.8 

0.71 
,(j’ 2 ‘ , ,(j’ 2 ‘ 7 , I ‘ ’ 10 

FIG. 5(b). Effect of Prandtl number on the surface tem- 
perature of the sheet for R = 0. I and c‘ = 0. I. 

FIG. 5(c). Effect of Prandtl number on the overall heat 
transfer rate for Q = 0. I and C = 0. I. 

the solid-fluid interface. To remedy this numerical 
difficulty. a coordinate transformation is performed 
in the axial direction. From the numerical results, the 
buoyancy force is seen to have a significant effect on 
the Biot number, surface temperature of the moving 
sheet and the overall heat transfer rate. The heat 
capacity ratio, however, is the most important par- 
ameter in the present conjugate heat transfer problem. 
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A large heat capacity ratio results in a large Biot 
number. This causes a rapid decrease in the surface 
temperature of the sheet in the region 5 < 0.1. Thus, 
it is improper to assume a uniform temperature dis- 
tribution across the thickness of the moving sheet in 
that region. In general. a liquid has a larger Prandtl 
number and a larger heat capacity than a gas. There- 
fore, using a liquid as the cooling medium a better 
cooling performance could be obtained than using a 
gas. Based on the present results, it is concluded that 
most of the good cooling performance of a liquid 
comes from its large heat capacity. 
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REFROIDISSEMENT DUNE FEUILLE D’EPAISSEUR CONSTANTE ET MOBILE EN 
PRESENCE DE CONVECTION NATURELLE 

RQume+Gn etudie le refroidissement d’une feuille en mouvement continu en prenant en compte les forces 
de flottement. La distribution de temperature le long de I-interface solide-fluide est detenninte en resolvant 
un problime de transfert thermique conjugue de conduction dans la feuille et de convection mixte adjacente 
a la surface de la feuille. Pour une meilleure stabilite numerique. on emploie le schema de fonction de 
ponderation avec une transformation de coordonee axiale pour resoundre les equations transform&es de 
couche limite. II existe trois parametres qui sont le nombre de Prandtl du fluide Pr, le parametre de 
flottement Q et le rapport des capacites thermiques C. Des resultats numeriques incluant le nombre de 
Biot. la temperature de surface et le flux global transfer& sont present& pour 0.7 < Pr Q 100,O Q R Q 10 
et 0, I < C d I. La force de flottement a un effet sensible sur les resultats. Neanmoins le rapport des capacitis 
thermiques est le paramitre le plus important. On conclut qu’avec un liquide, utilise comme fluide de 
refroidissement. on obtient un meilleur refroidissement qu’avec un gaz, ceci parce que le liquide a une 

capacite thermique plus grande que le gaz. Le nombre de Prandtl n’a qu’un effet minime. 
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KijHLUNG EINER STETIG BEWEGTEN PLATTE BEGRENZTER DICKE BE1 
NATijRLlCHER KONVEKTION 

Zusammenfassung-In der vorliegenden .4rhelt wird die Kiihlung einer stetig bewegten Platte hcgrenzter 
Dicke untersucht. Dabei werden such Auftriehseffekte beriicksichtigt. Die Temperaturverteilung entlang 
einer fest-fliissigen Grenzflache ergiht sich aus einem gekoppeiten Warmeiibertragungsproblem. lnnerhalb 
der Platte findet Wlrmeleitung statt. an der Plattenober!Xiche tritt erzwungene Mischkonvektion auf. 
Urn die numerische Stahilitit zu erhiihen. wird die Gewichtungsfunktion zusammen mit einer axialen 
Koordinatentransformation eingesetzt. Damit werden die transformierten Grenzschicht!leichungen gel&t. 
Die vorliegende Arbeit zeigt drei EinfluBparameter auf: die Prandtl-Zahl des Flutds Pr. den Auf- 
triebsparameter R und das WIrmekapazitltsverhlltnis C. Die Biot-Zahl. die Oherfllchentemperatur und 
der insgesamt von der Platte abgefiihrte Wirmestrom werden numerisch berechnet. und z\qtr fiir 
0.7 < Pr < 100. 0 ,< R < IO und 0.1 < C < 1. Es stellt sich heraus. da0 die Auftriehskraft die Ergebnisse 
wesentlich heeinBuBt. Der wichtigste Parameter ist Jedoch das Wirmekapazitatsverhlltnis. Die vor- 
liegenden Ergehnisse lassen darauf schlieI3en. daD Fliissigkeiten hesser als Kiihlmittel geeignet sind als 
Gase. Die Ursache hierfiir liegt in der griiBeren Warmekapazitit von Fliissigkeiten. Die Prandtl-Zahl 1st 

von untergeordneter Bedeutung. 

OXJIAXAEHHE l-IPH ECTECTBEHHOB KOHBEKUMM EiECKOHEsHOR JJBHXY~EtzCCr 
WIACTkIHbI KOHEsHOm TOJIIIJMHbI 

hmwrauw-MccnenyeTcs ox.namenHe 6ecnoiiewoii Asartywefica nnacTHm KoHewoii TOAUHHM c 

yseToM BAHKHHR noAaeMHoii cn.m. PacnpcneneHHe TeMnepaTyp Ha rpiurHue pa3Aena TeepAoro Tena u 

%wumcm onpenenaercn ny~eu peluenmi conpavemoii 3aAavH TennonepeHoca, o6ycnonnennoro Ten- 
nonposonnocrblo BH~T~H n.naCTHHbl H cMemaHHofi ceo6onwoii H sbmymnennofi KoHeermieZi oxono ee 
nonepxeocre. ,&M ynymeeHn ycroi%umo~~~ qHcneHHoro cwra npH peruewE npeo6pa3osawwtx ypan- 
tie&i noqwwioro cnox Hcnonbsyexn cxebta BeCOBbzx @y~rrmii, a TaKxce ~pa~c@opbiamin ocesofi 

KO0pAHHKTb.I. B AaHHOM HCCJleAOBKHHH yCTaHOBJIeHblTpHCymeCTE.eHHbIX napKMeTpK,a HMeHHO,WlCJla 

IlpaHATnn ~~AKOCTH Pr,napaMcrpa noA5emol cHnbI R H 0THomeHiw TennoewcaTefi C. ‘IwcnetnibIe 
pesynbTaTsl, 0npeAennloulHe wCna J&o,TeMnepaTypy noBepxHonH H 06ury10 HHTerictmHocrb Termo- 

nepewca n.nacTmibl, IIpeiACTKBJIeHbI ans 47 6 Pr C 100,O Q R < 10 H 41 Q C Q 1. OueaHnwo, wo yver 
nOAl.eMHOiiCHAbl OKa3blBaeTCyluen~HHOeBAHKHHeHa~3yAbTKTbl.OAHKKO,HaH6OA~BKmH~M IlKpa- 

hfcrpo~ RnnneTcnoTHomeiine TennoeMKCcTek. Ha OCHOB~A~HH~I~~~~~~T~T~B~A~~~H~~~KJIIO~~HH~O 
TOM, =rro Hcnonb3onasnxe XHAICOCTH B KaqeCTne oxnawaIomei4 cpeAb~ KnnseTcn Bonee X@&STHBHLIM, 

seh+ Hcnonb30namiera3a,~.~.eeTennoebncocrb 6onbrue.3+$er~ wfcAa IIpawnTnn He3xiawtTenw. 


